Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 11: 653670, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996631

RESUMO

Neglected Tropical Diseases include a broad range of pathogens, hosts, and vectors, which represent evolving complex systems. Leishmaniasis, caused by different Leishmania species and transmitted to humans by sandflies, are among such diseases. Leishmania and other Trypanosomatidae display some peculiar features, which make them a complex system to study. Leishmaniasis chemotherapy is limited due to high toxicity of available drugs, long-term treatment protocols, and occurrence of drug resistant parasite strains. Systems biology studies the interactions and behavior of complex biological processes and may improve knowledge of Leishmania drug resistance. System-level studies to understand Leishmania biology have been challenging mainly because of its unusual molecular features. Networks integrating the biochemical and biological pathways involved in drug resistance have been reported in literature. Antioxidant defense enzymes have been identified as potential drug targets against leishmaniasis. These and other biomarkers might be studied from the perspective of systems biology and systems parasitology opening new frontiers for drug development and treatment of leishmaniasis and other diseases. Our main goals include: 1) Summarize current advances in Leishmania research focused on chemotherapy and drug resistance. 2) Share our viewpoint on the application of systems biology to Leishmania studies. 3) Provide insights and directions for future investigation.


Assuntos
Leishmania , Leishmaniose , Psychodidae , Animais , Resistência a Medicamentos , Humanos , Biologia de Sistemas
2.
Front Microbiol ; 11: 901, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595607

RESUMO

Vector-borne flaviviruses are emerging threats to human health. For successful transmission, the virus needs to efficiently enter mosquito cells and replicate within and escape several tissue barriers while mosquitoes elicit major transcriptional responses to flavivirus infection. This process will be affected not only by the specific mosquito-pathogen pairing but also by variation in key environmental variables such as temperature. Thus far, few studies have examined the molecular responses triggered by temperature and how these responses modify infection outcomes, despite substantial evidence showing strong relationships between temperature and transmission in a diversity of systems. To define the host transcriptional changes associated with temperature variation during the early infection process, we compared the transcriptome of mosquito midgut samples from mosquitoes exposed to Zika virus (ZIKV) and non-exposed mosquitoes housed at three different temperatures (20, 28, and 36°C). While the high-temperature samples did not show significant changes from those with standard rearing conditions (28°C) 48 h post-exposure, the transcriptome profile of mosquitoes housed at 20°C was dramatically different. The expression of genes most altered by the cooler temperature involved aspects of blood-meal digestion, ROS metabolism, and mosquito innate immunity. Further, we did not find significant differences in the viral RNA copy number between 24 and 48 h post-exposure at 20°C, suggesting that ZIKV replication is limited by cold-induced changes to the mosquito midgut environment. In ZIKV-exposed mosquitoes, vitellogenin, a lipid carrier protein, was most up-regulated at 20°C. Our results provide a deeper understanding of the temperature-triggered transcriptional changes in Aedes aegypti and can be used to further define the molecular mechanisms driven by environmental temperature variation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...